
Structural Equation Modeling Lab 5 
In Class Modification Indices Example 

 
 
1. Model specifications syntax 
 

TI Modification Indices 
 DA NI=10 NO=0 MA=CM 
 RA FI='E:\Teaching\SEM S09\Lab 5\jsp162.psf' 
 SE 
 7 6 5 / 
 MO NX=1 NY=2 BE=FU GA=FI PS=SY 
 FR BE(1,2) GA(2,1) 
 PD 
 OU ND=4 SS EF MI RS 
 
Note. LISREL specifies PS=SY when building syntax from the user drawn 
path diagram, but interprets it to be PS=DI, FR in the model specification 
for estimation (as can be seen in the section of parameter specifications in 
the output). It is recommended that PS=DI, FR is specified explicitly when 
constructing your own syntax for this model. 

  
Figure 1. Temporal model path diagram with estimates 
 

 
 
2. Calculating degrees of freedom 

 
Degrees of freedom are determined by subtracting the number of free 
parameters we are estimating from the number of observed terms we are 
inputting. In this model the df = 1. This is because we are modeling one 
less path than what was modeled in the previous week. We are inputting 6 
unique terms with our covariance matrix but we are estimating 5 
parameters, leaving one observed term free to vary given the model 
specifications and parameter estimates. 
 
df = (variances + covariances) – (parameters being estimated) 
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One degree of freedom will result in a model in which fit can now be 
assessed since the equations specifying the relational aspects are no 
longer just identified. Subsequently, LISREL will produce a series of 
goodness of fit statistics, which we shall investigate one at a time  
 
throughout the course and will take a closer look at some later on in this 
example. 
 
 

3. Fitted regression equations 
 

For 1x =Math1, 2y =Math2 and 1y =Math3: 
 

21 .6591012.9864ˆ yy +=  

12 8414.07819.4ˆ xy +=  
 
 
4. Path diagram equations 
 

121211 ζβα ++= yy  
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These are the equations which are used to reproduce the originally 
observed variance-covariance matrix. 

 
 
5. Reduced form 
 

The reduced form for this model is similar to the previous reduced form 
with the notable difference that whereas before we had a multiple 
regression expressing math3 we now have a simple linear regression. 
Given,  
 

121211 ζβα ++= yy  

212122 ζγα ++= xy  
 

we can express 1y  in terms of 1x  by substituting 2y ’s equation into the 
first one. This will produce the reduced form for 1y . Since we cannot 



express 1x  in any other terms, the reduced form for 2y  remain the same 
as in the full model specification.  
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6. T-test of coefficients 
 

Every fitted parameter is presented in LISREL output in a three line form. 
The first line is the estimate of the parameter followed by its corresponding 
standard error (the second line in parentheses). The last line of this 
grouping is the t-value, calculated as the ratio of the estimate to the 
standard error. These T-values, similar to those seen in ordinary 
regression, are used to test the significances of the path coefficients. Let 
us consider 12β , the estimated path coefficient from the endogenous 
variable Math2 to the endogenous variable Math3. 
 
BETA 
 
               math3      math2 
              --------       -------- 
math3      - -          0.6591 
                            (0.0438) 
                            15.0554 
math2      - -              - -   
 
Note. The matrix above shows the regression coefficient of an 
endogenous variable on another, as opposed to the gamma matrix which 
presents the regression coefficients of the endogenous variables in rows 
on the exogenous variables in columns. 
 
Here 12β =.6591 is the direct effect of Math2 on Math3. From the above 
matrix it follows that 12β  has a standard error of .0438. The corresponding 
t-test (testing the hypothesis that the coefficient is equal to zero) can be 
thus computed as: 
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Note. Individual t-value can be seen in the path diagram by changing the 
estimate view to t-values. 



 
Since in this approach we are interested in if the coefficient is significantly 
different from zero (i.e. no effect), zero is subtracted from the estimate in 
the numerator of the computational formula. 
 
 

7. Standardized solutions 
 

As a reminder, the standardized solutions for each estimate can be 
computed by multiplying the unstandardized coefficient by the ratio of the 
standard deviation of the predictor to that of the dependent variable. For 
instance if we wish to standardize 21γ , the path from Math1 to Math2, we 
would have to multiply the coefficient by the appropriate ratio of the 
standard deviations: 
 

8064.
0238.58
2988.538414.

)2var(
)1var(

)2(
)1()( 212121 =×=×=×=

Math
Math

Mathsd
Mathsdstd γγγ  

 
It is important to remember that whereas the unstandardized coefficient is 
scale dependent on both variables with which it is associated, the 
standardized coefficient no longer depends on the scales of both 
variables. 

 
 
8. Goodness of fit 

 
Goodness of fit statistics are measures used to assess the adequacy of 
the model with respect to its ability to reproduce the variance-covariance 
matrix. There are many different goodness of fit statistics in LISREL. 
LISREL will print these in the output as well as in a separate file labeled as 
the same as the model run with the extension .fit. If the model is just 
identified (saturated, d.f.=0) the goodness of fit statistics would be 
meaningless because the model will reproduce the original variance-
covariance matrix perfectly. With no degrees of freedom there is nothing in 
the model left free to estimate and thus the assessment of the fit is 
unnecessary.  
 
However, in our example, by having deleted one of the gamma paths in 
the saturated model, we are left with one degree of freedom and nontrivial 
goodness of fit assessments. For the time being, let us look at the 
following five statistics presented in the goodness of fit section of the 
output: 

 
Degrees of Freedom = 1 
Normal Theory Weighted Least Squares Chi-Square = 35.4710 (P = 0.0) 



Minimum Fit Function Value ( minF ) = 0.2489 
Minimum Fit Function Chi-Square = 40.0677 
Root Mean Square Residual (RMR) = 3.4893 
Standardized RMR = 0.07289 
 
Perhaps the most commonly used goodness of fit statistic is the Normal 
Theory Weighted Least Squares Chi-Square (NTWLS 2χ ). Note that 
LISREL includes this statistic at the bottom of the path diagram when the 
PD command is invoked. This chi-square statistic is a measure of the 
discrepancies between the observed variance-covariance matrix (for all of 
the observed variables included in the model) and the reproduced 
variance-covariance matrix. From earlier labs you have learned that the 
model equations are used to reproduce the variance-covariance matrix. 
The reproduced matrix is labeled Covariance Matrix of Y and X in the 
LISREL output. When fitted values and residuals are requested (by 
specifying RS in the OU command), LISREL will also produce a matrix 
labeled Fitted Covariance Matrix, which is the same as the Covariance 
Matrix of Y and X. The NTWLS 2χ  indicates the extent to which the 
observed matrix deviates from the model reproduced (implied) matrix. 
Contrary to our intuition (guided by our hypothesis testing habits) we 
desire the NTWLS 2χ  to be not significant. A non-significant NTWLS 2χ  
means that the two matrices do not differ significantly from one another 
and that our specified model adequately reproduces the original variance-
covariances.  
 
The Minimum Fit Function Chi-square is computed as min)1( FN ×− , 
where minF  is the value of the fitting function (from either a Maximum 
Likelihood or a Generalized Least Squares procedure) at the convergence 
of the iterative estimation procedure. This value is largely used in the 
computation of the Minimum Fit Function Chi-Square (MFF 2χ ), which 
tests the model for exact fit (i.e. the null hypothesis is that the model 
implied variance-covariance matrix is identical to the population matrix). 
The MFF 2χ  is computed as: 
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As with the NTWLS 2χ , the 2χMFF  is desired to be non-significant -- 
MFF 2χ  tests for exact fit. 
 
The last two indices for goodness of fit considered in this example are the 
Root Mean Squares Residuals (RMR) and the Standardized RMR 
(SRMR) presented at the bottom of the goodness of fit section in the 



output. The residuals for this model are the differences between the 
observed (sample) and fitted (reproduced) variance-covariance matrices. 
The RMR is a scale dependent indicator of how much the two matrices 
differ from one another: 
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where ijσ ’s are the observed variances and non-redundant covariances,  

ijσ ’s are the fitted variances and non-redundant covariances, and p is the 
number of observed variables in the specified model. Since the RMR is 
scale dependent it can be misleading when used for model evaluation. 
Therefore a standardized alternative can be considered, the SRMR. For a 
model with perfectly reproduced variances (as in the current example), the 
standardized from can be obtained by fitting the correlation matrix.  This 
can be verified by using MA=KM, instead of MA=CM, in the DA command 
of the syntax. The resulting RMR with MA=KM is the same as the earlier 
SRMR. This value is not scale dependent and can now be generally 
evaluated. Kline (2005) as well as Raykov and Marcoulides (2006) 
suggest that SRMR less than .10 are favorable, which it is in our example. 
 
Sampling distributions of many goodness of fit statistics are usually not 
examined directly. Instead, rules of thumb are suggested (sometimes 
based on simulations). 
 
 

9. Modification indices 
 
Modification indices produced by LISREL indicate the expected change of 
Chi-square statistic when the specified model is modified by freeing one of 
the previously fixed parameters. The change is projected by considering a 
modification to the model by freeing one parameter at a time. As there is 
only one degree of freedom for the specified model, only  a single 
parameter can be added, which renders the model saturated (just 
identified). Thus, freeing any of the fixed parameters produces the same 
modification index. If there are more degrees of freedom and we want to 
add or change more than one specification, the modification indices 
presented in the output should be interpreted as one change at a time. It is 
suggested that the parameter with the largest modification index may be 
freed first, but substantive interpretation of such modification should also 
be considered. Sequential modifications of the model can be made as in 
the forward stepwise regression procedure. 
 



For every possible modification, three quantities are provided. The first 
reports the modification index for the path, which is the expected reduction 
of the NTWLS 2χ  by freeing (adding) the parameter. Figure 2 shows this 
relationship. 

 
Figure 2. Modification indices 
 

 

 
As can be seen in the figure, there are three possible modifications: 
adding a direct path from math1 to math 3 (i.e., adding 111xγ  to the 
equation for 1y , see the path diagram presented in section 4 earlier);  
adding a feedback path from math3 to math2 (i.e., adding 21 1yβ  to the 
equation for 2y , see the path diagram presented in section 4 earlier); and 
allowing the errors ( 1ς  and 2ς ) for the two equations to be correlated (i.e., 
freeing the covariance 12ϕ in the Ψ matrix – by specifying PS=SY, FR in 
the MO command). Each of the possible modifications will result in a 
saturated model. This is consistent with the observation that the initial 
model has just one degree of freedom. As 2χ for a saturated model (with 
zero degree of freedom) is zero, each modification will reduce 2χ  to zero 
(i.e., having a modification index equal to 35.47, which is the NTWLS 2χ  
for the initial model). 
 
The second matrix in every section of the modification indices provides the 
expected change of the unstandardized estimate of the parameter if 
modified alone. As each of the possible modifications is to change the 
parameter from zero, the expected change here is effectively the projected 
estimate of the parameter in the modified model. Figure 3 shows the 
projected estimates of the corresponding parameters. Here we can see 
that both the feedback path and the error covariance would be negative. 
Neither of which make much sense and constitute in fact a statistical 
modeling possibility rather than a sensible, theory supported, modification.  
 



Figure 3. Expected changes 
 

 
 

On the other hand, the gamma coefficient ( 11γ ) is the path currently 
omitted from the saturated model fitted at the last lab (Lab 4, 2-11-09). 
Note this particular saturated model makes sense conceptually in the 
temporal context. As we can see from the expected change matrix, this 
modified model is expected to give the same estimate for 11γ  as obtained 
for the Lab 4 model. It is important to see that the modified model will also 
change the estimate of 12β in the current model (its estimate will become 
same as that obtained at Lab 4). Note that LISREL also gives a summary 
of the modification indices by showing which of all of the possible (single) 
modifications is expected to result in the largest improvement in fit (as 
indicated by the reduction of 2χ ) . This is helpful when considering larger 
models with a greater number of degrees of freedom. However, it is not 
necessarily the best single modification (which is best supported 
conceptually) when equivalent modifications on different types of 
parameters (e.g., direct path, feedback path, or error covariances) are 
possible as seen this example. 

 
10. Direct and indirect effects 
 

In the present example, calculations of direct and indirect effects are fairly 
straightforward. In the temporal model done at lab 4, there are only two 
paths. This translates into two direct effects and one indirect effect. 12β  is 
the direct effect of Math2 on Math3 and 21γ  is the direct effect of Math1 on 
Math2. Since there is no path from Math1 to Math3, there is no direct 
effect of Math1 on Math3. However, there is an indirect effect of Math1 on 
Math3, which equals to the product 1221 βγ ×  as shown in the last 
expression of the reduced form derived in section 5 earlier. Because the 
present model assumes no direct effect of Math1 on Math3, this is also the 
total effect of Math1 on Math3. Likewise, the direct effects of Math1 on 
Math2 and Math2 on Math3 are also equivalent to their corresponding 
total effects.  


