
Structural Equation Modeling Lab 4 
In Class Path Analysis Example 

 
1. Path diagram and syntax 
 

 
 TI Path Analysis Example 

 Math3 on Math1 and Math2 with path from Math1 to Math2 
 DA NI=10 NO=0 MA=CM 
 RA FI='C:\YOUR PATH HERE\jsp162_lab1_2-11-09.psf' 
 SE 
 6 7 5 / 
 MO NX=1 NY=2 BE=FU GA=FI PS=SY 
 FR BE(2,1) GA(1,1) GA(2,1) 
 PD 
 OU ND=4 EF SS 
 
Note. You could reverse the order of selected variables (SE 7 6 5 for 
example), this would produce the same estimates but different parameter 
specifications. So in the case of variable seven being the first endogenous 
variable in order to get the same model you would need to specify BE(1,2) 
instead. 

 
2. Calculating degrees of freedom 

 
Degrees of freedom are determined by subtracting the number of free 
parameters we are estimating from the number of observed terms we are 
inputting. 
 
For example, in this model the df=0. This is because we are inputting 6 
unique terms with our covariance matrix 
 
df = (variances + covariances) – (parameters being estimated) 
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Zero degrees of freedom will result in a perfect model fit because we have 
exactly as many things to estimate as we are observing. This can be 
likened to solving the following equations: 
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With two unknowns (x and y), and two equations, we can find one unique 
solution (x=7, y=-4) that reproduce the values exactly/perfectly. However, 
if we reduce the number of equations to one: 
 

102 =+ yx  
 
Now we have two unknowns with only one equation. This would result in 
negative degrees of freedom (when we have more unknown terms in our 
model that observed terms). In this case, there would be an infinite 
number of solutions, and no way to determine which was better than any 
other. If we ran a model with negative df, we would receive a “model fails 
to converge” error message. If we increase the number of equations 
(assuming no equations are linearly dependent) 
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we have positive df. This will be what you typically deal with in SEM. The 
goal would be to find values for x and y that come as close to reproducing 
the equations as best as possible. There are different ways to evaluate 
how good the solution for the unknowns is, and this is where goodness-of-
fit statistics come into play. 

 
3. Fitted regression equations 
 

For 1x =Math1, 1y =Math2 and 3y =Math3: 
 

11 8414.07819.4ˆ xy +=  
112 3046.04586.06072.10ˆ yxy ++=  

 
4. Path diagram equations 
 

111111 ζγα ++= xy  
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These are the equations which are used to reproduce the originally 
observed variance covariance matrix. 
 
            math3           math2        math1    
            --------           --------         -------- 
math3    42.9972 
math2    38.2426    58.0238 
math1    38.1051    44.8473     53.2988 
 

5. Equations used to reproduce the covariance matrix 
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Note. All terms in the above equations should be taken from the LISREL 
estimates (found after the iteration statement, and not the initial solutions). 

 
6. Reduced form 
 

Consider Math3 in our model. Math2 has a direct effect on Math3 ( )21β .  
Math1 also has a direct effect on Math3 ( )21γ . However, Math1 also has an 
indirect effect of Math3 that is mediated by its relationship through Math2. 
Since our model is recursive, we can express the entire relationship of 
math3 by substituting the equation for math2 within it. Take our two 
equations that express our model. 
 

111111 ζγα ++= xy  

212112122 ζβγα +++= yxy  
 

To create our reduced form, substitute the 1y equation for the 1y  term in 
the 2y  equation: 
 

2111112112122 )( ζζγαβγα +++++= xxy  
 
Now expand the 21β  parentheses: 
 

21211112112112122 ζζβγβαβγα +++++= xxy  
 
Reorganizing the intercept regression (path) coefficient for 1x  and error 
terms together, let’s look explicitly at the regression of 2y  on 1x . 



 
)()()( 21211112112112122 ζζβγβγαβα +++++= xxy  

 
)()()( 2121112121112122 ζζβγβγαβα +++++= xy . 

 
This is the model for the reduced form described above. 

 
Note. that there is no reduced form for 1y  because 1y  is only expressed in 
terms of the exogenous variable and has no indirect effects. It is within this 
reduced form for 2y  and more specifically in the combination of 
coefficients specific to 1x  that lies the key to delineating the direct, indirect 
and total effects of 1x  on 2y . 

 
 
7. Standardized coefficients 
 

LISREL will provide standardized solutions for all of the estimated 
parameters. It will do so by computing the product between the 
unstandardized estimate and the ratio between the corresponding 
standard deviations. Let us consider an example. LISREL reported the 
path coefficient between the two endogenous variables as follows: 
 
BETA 
          math3       math2 
         --------   -------- 
math3      - -         - -   
math2    0.3046        - -   
        (0.0654) 
         4.6595 
 
From this it follows that the standardized form of this estimate can be 
computed as follows: 
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This standardization can be verified in at least three ways: a) changing the 
path diagram model display to standardized estimates which will display 
the standardized solutions on the path diagram, b) double-checking the 
LISREL output which (due to our request in the output tag OU SS) will 
have produced the standardized solutions following the model fit, or c) 
resubmitting the model syntax with the substitution of KM for CM in the DA  



 
command MA=CM tag, which effectively analyzes a correlation matrix as 
opposed to the covariance matrix and thus produces already standardized 
solutions. For our example let us consider the output provided: 
 
Standardized Solution 
BETA 
              math3      math2 
            --------   -------- 
    math3      - -        - - 
    math2    0.3539       - - 
 
We can see that our computation is accurate to the 3rd decimal place. This 
slight divergence is due to rounding error since we have used rounded (to 
the fourth decimal place) estimates.  

 
 
8. Calculating squared multiple correlation (R2) 
 

Unlike in multiple regression where we compute a single squared multiple 
correlation coefficient (coefficient of determination) in SEM. Here in our 
path analysis example, we have one for each regressive equation. Note 
that in the case of 1y  the squared multiple correlation will be reduced to 
the square of the bivariate correlation between 1y  and 1x . The squared 
multiple correlation for the first equation can be generally expressed in the 
form: 
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Again, note that the 2R  will be different for 2y in the reduced form as 
opposed to the 2y  in the original equations? Look at our reduced form 

2y equation. You can see by changing the terms explicitly to express the 

1x  relationship, reproducing the )var( 2y will be using different terms and 
will thus give you a different numerical result for the error variance, 
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9. Direct effects 
 

The direct effects in the model are easily identified for those are the 
estimated path coefficients we see in the path diagram. Therefore, by 
examining the diagram we note that there are three direct effects, two of 
the exogenous variable on the two endogenous variables and one of the 
first endogenous variable on the second one. 



10. Indirect and total effects 
 

Indirect effects are not explicitly stated on the path diagram since those 
are effects mediated by other variables. In our example there is only one 
indirect effect, that of the exogenous variable on the second endogenous 
variable through the first endogenous variable. Meaning, there is an 
indirect effect of 1x  on 2y  though 1y . Let’s look at the term associated with 

1x  from the reduced form:  
 

)( 1121211 γβγ +x  
 
In this term 21γ  represents the direct effect of math1 ( 1x ) on math3 ( 2y ). 
This can be verified by checking the path diagram and sure enough, 21γ  is 
the path coefficient for that direct relationship. Conversely, 1121γβ  
represents the indirect effect of math1 ( 1x ) on math3 ( 2y ) mediated by 
math2 ( 1y ). Subsequently, the total effect of math1 on math3 will be the 
sum of the direct and indirect effects )( 112121 γβγ + , as denoted in the 
reduced form for math3 ( 2y ). Direct, indirect and total effects can be 
separately analyzed in LISREL by requesting the portioned effects to be 
printed in the output using the EF option (OU EF). These estimate 
matrixes allow us to make inferences regarding the mediation of variables 
through other variables. In our example let us examine our one indirect 
effect of math1 ( 1x ) on math3 ( 2y ). 

 
Total and Indirect Effects 
Total Effects of X on Y      
 
          math1 
        -------- 
math2     0.84 This is the total effect of 1x on 1y : 8414.011 =γ . Note that 1x   
         (0.05) only has this direct relationship with 1y , so the direct effect is the  
          17.25  same as the total effect. 
math3     0.71 This is the total effect of  1x  on 1121212 : γβγ +y , the sum of the  
         (0.04) direct and indirect effects (see the second equation in number 3)  
          16.63 .7148.02562.04586.0 =+  
 
Indirect Effects of X on Y 
 
         math1 
        -------- 
math2     - -  As noted above, there is no indirect effect of 1x  on 1y . 
math3     0.26  However, there is an indirect effect of 1x on 2y . Based  
         (0.06)  on our reduced form, this should be  
          4.50  .2562.08414.0*3046.01121 ==γβ  
 



Total Effects of Y on Y 
 
       math2    math3 
       ------   ------ 
math2   - -      - - 
math3   0.30     - -- Here is the total direct effect of 1y on .3046.0: 212 =βy  
       (0.07) 
        4.66 

 
 
11. Equivalent models & temporal relationships 
 

As you may have already discovered from the distributed readings and the 
course lecture SEM models are generally hypothesis driven. It is therefore 
imperative to have a clear and concise idea in mind when building these 
relational models. Temporal aspects often provide a significant logical 
indicator on how certain relationship ought to be modeled. In the 
discussed example we have three math achievement scores. These 
scores were collected from a sample on three separate occasions; math1 
was collected when the sample was in 3rd grade, math2 in 5th grade and 
math3 in 8th grade. It is illogical in such a situation to model these 
variables retrospectively, meaning that math3 should predict math1 when 
math3 was temporally collected after math1. This particular situation also 
provides suggestions regarding mediation. It is plausible to conceive that 
math3 scores will be predicted by math1 and math2 scores, but also that 
math1 will have a separate impact on math2 and subsequently mediated 
indirect effect on math3.  
 
The issue of equivalent models is usually discussed when regarding the 
dilemma of directionalities of modeled relationships. In our example math1 
predicts math2. Regard the original path diagram: 
 
 

 
 
and its standardized solutions. 
 



 
 
From regression analysis it follows that when one variable is regressed on 
another single predictor the resulting relationship accounts for the same 
amount of variability as when the relationship is reversed (i.e. regressing 
the predictor on the earlier response variable). This is due to the property 
that the coefficient of determination is reduced to the square of the 
correlation between the two, which does not change even if the 
relationship is reversed. Consequently, the unstandardized regression 
coefficient for the simple linear regression is appropriate for the scale of 
the predictor and will therefore be different if the relationship is reversed. 
However, since these relationships are equivalent one can verify it by 
standardizing the regression coefficient to see that it is the same in both 
cases. Consider now the earlier example. We could reverse the 
relationship between math2 and math1, making math2 the exogenous 
variable predicting math1 and math3. The unstandardized coefficient is 
going to be appropriate for the scale of math2. 
 

 
 
However, the standardized coefficient, as well as all others, is the same. 
This is because the only altered relationship is that between math2 and 
math1 which in essence is a simple linear regression and therefore 
equivalent no matter which direction it is. 
 

 


